
Chapitre 10

Thermodynamique des milieux

continus

10.1 Bilan de substance chimique

On considère un fluide homogène et uniforme constitué de différentes substances
chimiques réactives.

1) Déterminer le taux de variation ṅA de la densité de substance chimique A.

2) En considérant le régime stationnaire, déterminer la condition imposée sur
les coefficients stœchiométriques νaA.

10.1 Solution

1) Pour un système uniforme, les divergences de la vitesse v et de la densité
de courant chimique jA sont nulles,

∇ · v = 0 et ∇ · jA = 0

Par conséquent, l’équation de continuité (10.26) pour la substance chimique
A se réduit à,

ṅA =

n∑
a=1

ωa νaA

2) En régime stationnaire,

ṅA = 0

ce qui implique que les coefficients stœchiométriques satisfont la condition,

n∑
a=1

ωa νaA = 0
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10.2 Dérivée temporelle et gradient de pression

1) Déterminer l’expression de la dérivée temporelle de la pression.

2) Déterminer l’expression du gradient de pression.

10.2 Solution

1) Compte tenu des expressions (10.86) et (10.71), la densité d’énergie interne
u est donnée par,

u = T s− p+

r∑
A=1

µA nA + q ϕ

La dérivée temporelle de la densité d’énergie interne u s’écrit,

u̇ = s Ṫ + T ṡ− ṗ+
r∑

A=1

(nA µ̇A + µA ṅA) + ϕ q̇ + q ϕ̇

Comme la densité d’énergie interne u (s, {nA}, q) est une densité de fonction
d’état, sa dérivée temporelle s’écrit,

u̇ =
∂u

∂s
ṡ+

r∑
A=1

∂u

∂nA
ṅA +

∂u

∂q
q̇

Compte tenu des définitions (10.77) des variables intensives température
T , potentiel chimique µA de la substance A et potentiel électrostatique ϕ,

u̇ = T ṡ+

r∑
A=1

µA ṅA + ϕ q̇

En identifiant les deux expressions de la dérivée temporelle de la densité
d’énergie interne, on obtient l’expression de la dérivée temporelle de la
pression,

ṗ = s Ṫ +

r∑
A=1

nA µ̇A + q ϕ̇

2) Le gradient de la densité d’énergie interne u s’écrit,

∇u = s∇T + T ∇ s− ∇ p+

r∑
A=1

(nA∇µA + µA∇nA) + ϕ∇ q + q∇ϕ

Comme la densité d’énergie interne u (s, {nA}, q) est une densité de fonction
d’état, le gradient de la densité d’énergie interne s’écrit,

∇u =
∂u

∂s
∇ s+

r∑
A=1

∂u

∂nA
∇nA +

∂u

∂q
∇ q
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Compte tenu des définitions (10.77) des variables intensives,

∇u = T ∇ s+

r∑
A=1

µA∇nA + ϕ∇ q

En identifiant les deux expressions du gradient de la densité d’énergie in-
terne, on obtient l’expression du gradient de pression,

∇ p = s∇T +
r∑

A=1

nA∇µA + q∇ϕ

10.3 Récipient contenant de l’huile et de l’eau

a

L

h

h huile

eau

Fig. 10.1 Un récipient contient des hauteurs égales d’eau et d’huile et l’eau remplit entiè-
rement le bec de longueur L.

Un récipient avec un long bec est rempli d’huile et d’eau de sorte que le bec
soit rempli jusqu’à son extrémité (fig. 10.1). L’eau et l’huile sont en contact
avec l’atmosphère. Les hauteurs h de l’eau et de l’huile sont les mêmes dans le
récipient. Déterminer l’expression de l’angle d’inclinaison α du bec de longueur
L en termes des densités de masse me et mh de l’eau et de l’huile.

10.3 Solution

La pression hydrostatique p au fond du récipient est la somme de la pression
atmosphérique p0, de la pression de l’huile mh g h et de la pression de l’eau
me g h,

p = p0 +mh g h+me g h

La pression hydrostatique au bas du bec est égale à la pression hydrostatique
au fond du récipient. Elle est la somme de la pression atmosphérique p0 et de
la pression de l’eau me g L sinα,

p = p0 +me g L sinα

De ces deux équations, on tire l’expression de l’angle d’inclinaison du bec α,

sinα =
me +mh

me

h

L



4 Thermodynamique des milieux continus

10.4 Dynamique d’un système homogène et uniforme

Etablir l’expression de la 2e loi de Newton pour un système fermé constitué
d’un fluide homogène et uniforme de masse M en mouvement rectiligne.

10.4 Solution

1) Pour un système uniforme, la divergence du tenseur des contraintes τ est
nulle,

∇ · τ = 0

Par conséquent, la 2e loi de Newton (10.35) pour un fluide uniforme en
mouvement rectiligne se réduit à,

f ext = mv̇

L’accélération a ≡ v̇ est une grandeur intensive puisqu’elle correspond au
rapport de deux grandeurs extensives. On peut donc intégrer cette équation
par rapport au volume V du système,∫

V

dV f ext =

(∫
V

dV m

)
a

qui prend la forme usuelle,

F ext = M a

où F ext est la force extérieure résultante agissant sur le système.

10.5 Flotteur sphérique

h

H
R

p
0

p
0

Fig. 10.2 Un flotteur sphérique est utilisé comme bouchon.

Un bouchon sphérique de rayon R bloque un trou circulaire horizontal situé au
fond d’un récipient rempli de liquide (fig. 10.2). Le niveau du liquide de densité
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de masse m dans le récipient est à une hauteur H au-dessus du trou (H > R/2)
et le point le plus bas de la sphère est à une profondeur h au-dessous du trou
(h < R/2). La pression au-dessus du liquide et en-dessous de la sphère est la
pression atmosphérique p0. Déterminer la force d’Archimède FA exercée par le
liquide sur le bouchon sphérique,

FA = −
∫
S

p dS

10.5 Solution

Afin de déterminer la force d’Archimède FA exercée par le liquide sur le flot-
teur sphérique, on doit d’abord déterminer la force infinitésimale dFA (z) exer-
cée par le liquide sur un anneau sphérique infinitésimal situé à une hauteur
z au-dessus du fond du récipient (fig. 10.3). D’après la définition de la force

z

H

R R-h
q

Fig. 10.3 Un anneau sphérique infinitésimal sur la surface du flotteur.

d’Archimède, on a,
dFA (z) = − p (z) dS (z)

La pression p (z) exercée par le liquide à la hauteur z est donnée par,

p (z) = mg (H − z)

Par symétrie, le vecteur dS (z) est orienté verticalement vers le haut car il pointe
hors du liquide. Ainsi, la surface dS (z) de l’anneau sphérique infinitésimal est,

dS (z) = R2 sin θ (z) cos θ (z) dθ (z)

∫ 2π

0

dφ ẑ

= 2π R2 sin θ (z) d
(

sin θ (z)
)
ẑ

où ẑ est le vecteur unité le long de l’axe z orienté vers le haut et le facteur
sin θ (z) rend compte de la projection de la surface infinitésimale dS (z) le long
de l’axe z. Par inspection graphique, on déduit que,

sin θ (z) =
R− h− z

R
et ainsi d

(
sin θ (z)

)
= − 1

R
dz
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Ainsi, l’élément de surface infinitésimale devient,

dS (z) = − 2π (R− h− z) dz ẑ

et la force infinitésimale est écrite en termes de la coordonnée verticale z comme,

dFA (z) = 2πmg (H − z) (R− h− z) dz ẑ

L’intégrale sur la coordonnée verticale z s’écrit,

FA = 2πmg

∫ H

0

(H − z) (R− h− z) dz ẑ

ou de manière équivalente comme,

FA = 2πmg

∫ H

0

(
H (R− h)− z H − z (R− h) + z2

)
dz ẑ

Ainsi, la force d’Archimède est donnée par,

FA = πmgH2

(
R− h− H

3

)
ẑ

10.6 Profil de température de l’atmosphère terrestre

Modéliser le profile de température T (z) de l’atmosphère terrestre comme fonc-
tion de la hauteur z. Ignorer les vents, les nuages et de nombreux effets dus à
la présence d’humidité et traiter l’air comme un gaz parfait. Supposer que l’at-
mosphère terrestre atteint un état d’équilibre principalement dû au transfert
de matière. Supposer que le déplacement d’une masse d’air vers le haut ou vers
le bas est un processus adiabatique parce que la conductivité de l’air est faible.

1) Montrer que,

T (z) = T0 −
g

c∗p
z

où c∗p est la chaleur spécifique par unité de masse à pression constante.

2) Déduire du profile de température T (z), le profil de pression p (z) et le
profil de densité de masse m (z) de l’atmosphère terrestre,

p (z) = p0

(
T (z)

T0

)c+1

et m (z) = m0

(
T (z)

T0

)c
où c est défini en (5.60).
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10.6 Solution

1) Pour un processus adiabatique, la différentielle de l’énergie interne dU est
due seulement au travail infinitésimal δW = − p dV effectué sur l’air,

dU = cNRdT = − p dV

Vu que l’air peut être traitée comme un gaz parfait,

U = cNRT = c p V

où la pression p est une fonction du volume V . Ainsi,

dU

dV
= c

dp

dV
V + c p = − p

ce qui implique que,
dV

V
= − c

c+ 1

dp

p

La différentielle de l’énergie interne dU devient,

dU = cNRdT =
c V

c+ 1
dp

La pression hydrostatique p (z) décrôıt linéairement avec l’altitude,

dp = −mg dz

Ainsi,
dT

dz
= − mg V

(c+ 1)NR

A l’aide de la définition de la chaleur spécifique à pression constante par
unité de masse,

c∗p =
Cp
mV

=
(c+ 1)NR

mV

le gradient de température gradient se réduit à,

dT

dz
= − g

c∗p
ainsi dT = − g

c∗p
dz

En intégrant cette relation de la position initiale z0 où la température est
T0 à la position finale z où la température est T (z), on obtient,

T (z) = T0 −
g

c∗p
z

2) D’après la propriété (5.83),

T c+1

p
= cste
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où c+ 1 = c γ, on déduit le profil de pression du profil de température,

p (z) = p0

(
T (z)

T0

)c+1

Compte tenu de la propriété,

mV = cste

et de l’équation d’état du gaz parfait,

p V

T
= cNR = cste on obtient

p

mT
= cste

On en déduit la relation suivante,

m (z)

m0
=
p (z)T0
p0 T (z)

A l’aide du profile de pression en fonction de la température, on obtient le
profil de masse en fonction de la température,

m (z) = m0

(
T (z)

T0

)c

10.7 Ballon stratosphérique

Modéliser l’ascension d’un ballon de masse M , qui s’élève du sol jusqu’à la stra-
tosphère.

(1)

Au niveau du sol, le ballon a un volume V0, qui est plus petit que
le volume Vmax qu’il a quand il est entièrement gonflé. Toutefois, le volume V0
est suffisant pour soulever la charge utile. Le ballon est rempli d’hélium, qui est
considéré comme un gaz parfait. Utiliser le principe d’Archimède (sect.10.5.3)
et le modèle de l’atmosphère terrestre établi à l’exercice 10.6.

1) Déterminer la hauteur maximale zmax atteinte par le ballon.

2) Montrer que la force d’Archimède FA exercée sur le ballon est indépendante
de la hauteur du ballon tant qu’il n’est pas entièrement gonflé.

10.7 Solution

1) Le profil de masse (sect.10.6) s’écrit,

m (zmax) = m0

(
T (zmax)

T0

)c
= m0

(
1− g

c∗p T0
zmax

)c
(1)

T. Yamagami, Y. Saito, Y. Matsuzuka, M. Namiki, M. Toriumi, R. Yokota, H. Hirosawa,
K. Matsushima, Development of the highest altitude balloon, Advances in Space Research
33 1653-1659 (2004).
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Fig. 10.4 Un ballon stratosphérique juste après le décollage.

ce qui implique que la hauteur maximale zmax est donnée par,

zmax =
c∗p T0

g

(
1− m (zmax)

m0

)1/c

A la hauteur maximale zmax, la force d’Archimède (sect. 10.5.3) est égale
et opposée au poids. Ainsi, ces forces ont des normes égales,

m (zmax)Vmax g = M g

ce qui implique que,

m (zmax) =
M

Vmax

Ainsi, la hauteur maximale zmax est mise sous la forme,

zmax =
c∗p T0

g

(
1− M

m0 Vmax

)1/c

2) Lorsque le ballon monte, i.e. V < Vmax, la pression à l’intérieur du ballon
est égale à la pression atmosphérique et le ballon est toujours à l’équilibre
thermique avec l’air atmosphérique car il monte si lentement. A l’altitude
z, la force d’Archimède est donnée par,

FA (z) = m (z)V (z) g ẑ

Comme la masse d’hélium dans le ballon est constante,

mV = cste ainsi m (z)V (z) = m0 V0

Par conséquent, la force d’Archimède est constante,

FA (z) = m0 V0 g ẑ = cste
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10.8 Champ de vitesse dans un tube

Un fluide s’écoule dans un tube qui a une forme telle que le champ de vitesse
dépend linéairement de la position x le long du tube (fig. 10.5). A l’entrée
(x = 0), la vitesse est v0. A la sortie (x = L), la vitesse est 3 v0. Déterminer
l’accélération a (x) d’un petit volume de fluide.

L = 30 cm

v = 3 v0v0

Fig. 10.5 Un tube impose un certain champ de vitesse v (x, t) au fluide to the fluide qui
s’écoule dans le tube.

Application numérique

v0 = 3 m/s, L = 0.3 m.

10.8 Solution

Le champ de vitesse v (x, t) est une fonction linéaire de la coordonnée spatiale
x et une fonction du temps t. A l’instant initial t = 0, le petit élément de fluide
est à l’entrée. A l’instant final t = tf , il est à la sortie. Le champ de vitesse
v (x, t) doit satisfaire les conditions initiale et finale,

v (0, 0) = v0 et v (L, tf ) = 3 v0

Ainsi, le champ de vitesse est donné par,

v (x, t) = v0

(
1 +

2x

L

)
Le champ d’accélération a (x, t) est obtenu en prenant la dérivée temporelle
dans le référentiel du fluide (10.18) du champ de vitesse,

a (x, t) = v̇ (x, t) = ∂t v (x, t) + v (x, t) ∂x v (x, t)

Le champ de vitesse est un champ stationnaire car il ne dépend pas expli-
citement du temps, i.e. ∂t v (x, t) = 0. Ainsi, le champ d’accélération a (x, t)
s’écrit,

a (x, t) = v0

(
1 +

2x

L

)
2 v0
L

=
2 v20
L

(
1 +

2x

L

)
ce qui implique que,

a (0, 0) =
2 v20
L

= 60 m/s et a (L, tf ) =
6 v20
L

= 180 m/s
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10.9 Divergence d’un champ de vitesse

Etablir l’équation de continuité (10.34) pour la densité de masse en déterminant
la variation de masse à l’intérieur d’une bôıte cubique infinitésimale située à une
position écrite en coordonnées cartésiennes comme (x, y, z). La bôıte a des faces
carrées orthogonales aux axes de coordonnées cartésiennes et les dimensions des
arrêtes de la bôıte infinitésimales sont dx, dy et dz. Le champ de vitesse est
v (x, y, z).

10.9 Solution

D’abord, on considère les faces d’une bôıte cubique qui sont orthogonales à
l’axe x. Le débit de masse à travers la face située en position x − dx/2 est
déterminé par la vitesse vx (x− dx/2, y, z) et le débit de masse à travers la
face située en position x+ dx/2 est déterminé par la vitesse vx (x+ dx/2, y, z).
La variation infinitésimale de la masse dMx à l’intérieur de la bôıte durant un
intervalle de temps infinitésimal dt est due au débit de masse à travers ces deux
faces. Ainsi, la variation infinitésimale de masse s’écrit,

dMx = m

(
x− dx

2
, y, z

)
vx

(
x− dx

2
, y, z

)
dy dz dt

− m

(
x+

dx

2
, y, z

)
vx

(
x+

dx

2
, y, z

)
dy dz dt

où m (x, y, z) est la densité de masse. Les signes dans le membre de droite de
cette équation sont dus au fait que la vitesse vx (x− dx/2, y, z) est positive
pour un débit entrant de masse et la vitesse vx (x+ dx/2, y, z) est positive
pour un débit sortant de masse. Les développements limités au premier ordre
des densités de masse m (x± dx/2, y, z) et des vitesses vx (x± dx/2, y, z) sont
donnés par,

m

(
x± dx

2
, y, z

)
= m (x, y, z)± 1

2
∂xm (x, y, z) dx

vx

(
x± dx

2
, y, z

)
= vx (x, y, z)± 1

2
∂x vx (x, y, z) dx

Compte tenu de ce résultat, l’expression pour la variation infinitésimale de
masse devient,

dMx =

(
m− 1

2
∂xmdx

)(
vx −

1

2
∂x vx dx

)
dy dz dt

−
(
m+

1

2
∂xmdx

)(
vx +

1

2
∂x vx dx

)
dy dz dt

et se réduit à,
dMx = − (vx ∂xm+m∂x vx) dx dy dz dt

De manière similaire, la variation infinitésimale de masse dMy à l’intérieur de
la bôıte durant un intervalle de temps infinitésimal dt, dû au débit de masse à
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travers les deux faces orthogonales à l’axe y, est donnée par,

dMy = − (vy ∂ym+m∂y vy) dx dy dz dt

et la variation infinitésimale de masse dMz à l’intérieur de la bôıte durant un
intervalle de temps infinitésimal dt, dû au débit de masse à travers les deux
faces orthogonales à l’axe z, s’écrit,

dMz = − (vz ∂zm+m∂z vz) dx dy dz dt

La dérivée partielle de la densité de masse par rapport au temps est définie
comme,

∂tm =
dMx + dMy + dMz

dx dy dz dt

ce qui implique que,

∂tm = − (vx ∂x + vy ∂y + vz ∂z)m− m (∂x vx + ∂y vy + ∂z vz)

A l’aide des relations vectorielles,

v ·∇ = vx ∂x + vy ∂y + vz ∂z

∇ · v = ∂x vx + ∂y vy + ∂z vz

La dérivée partielle de la densité de masse par rapport au temps est mise sous
la forme suivante,

∂tm = − (v ·∇)m− (∇ · v)m

A l’aide de la définition (10.18) de la dérivée temporelle dans le référentiel du
fluide,

ṁ = ∂tm+ (v ·∇)m

on obtient l’équation de continuité (10.34) pour la masse,

ṁ+ (∇ · v)m = 0

10.10 Fluide dans un récipient accéléré

Un récipient avec des parois verticales et une base rectangulaire est soumis à
une accélération constante a orientée vers la droite. On suppose que le liquide
de densité de masse m à l’intérieur du récipient est à l’équilibre par rapport au
récipient et que les frottement sont négligeables.

1) Déterminer la pression dans le liquide comme fonction de la coordonnée
horizontale x et de la coordonnée vertical z.

2) Montrer que la surface du liquide est inclinée vers l’arrière avec un angle
d’inclinaison constant α (fig. 10.6). Déterminer l’expression pour α.
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a

a

x

z

p0

h

O

Fig. 10.6 Un récipient rempli de liquide est soumis à une accélération constante. Dans
un état stationnaire, la surface de l’eau est inclinée vers l’arrière avec un angle d’inclinaison
constant α.

10.10 Solution

1) En absence de frottement visqueux, la seule densité de force extérieure
exercée sur un volume infinitésimal de liquide est son poids spécifique,

f ext = m g

Etant donné qu’il n’y a pas de cisaillement et de frottement, i.e. τ fr = 0,
d’après l’équation (10.81), la divergence du tenseur des contraintes se réduit
à l’opposé du gradient de pression,

∇ · τ = −∇ p

Ainsi, la 2e loi de Newton (10.35) peut être mise sous la forme,

∇ p = −ma+m g

Le gradient de pression ∇ p est exprimé en coordonnées cartésiennes
comme,

∇ p =
∂p

∂x
x̂+

∂p

∂z
ẑ

L’accélération a et le champ gravitationnel g s’écrivent,

a = a x̂ et g = − g ẑ

ce qui implique que,

∂p

∂x
= −ma et

∂p

∂z
= −mg

La différentielle de la pression peut être mise sous la forme,

dp (x, z) =
∂p

∂x
dx+

∂p

∂z
dz = −madx− mg dz
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La pression p (x, z) est obtenue par intégration sur les coordonnées spatiales
x et z,

p (x, z) = −max− mg z + p (0, 0)

où la constante d’intégration p (0, 0) correspond à la pression à l’origine O
du référentiel. La pression p (0, 0) est la somme de la pression atmosphérique
p0 et de la pression hydrostatique d’une colonne de liquide mg h,

p (0, 0) = p0 +mg h

Ainsi, la pression au point (x, z) à l’intérieur du liquide s’écrit,

p (x, z) = −max− mg z + p0 +mg h

2) L’équation précédente peut être mise sous la forme,

z = − a

g
x+ h− p− p0

mg

A la surface du liquide, la pression est simplement la pression atmosphé-
rique, i.e. p = p0. Ainsi, la relation précédente se réduit à,

z = − a

g
x+ h (à la surface)

ce qui correspond à une droite avec une pente négative étant donné que
a, g et h sont des constantes positives. Ainsi, l’angle d’inclinaison α est
déterminé en calculant le rapport des coordonnées,

tanα = − z

x
=
a

g
ainsi α = arctan

(
a

g

)


