CHAPITRE 10

Thermodynamique des milieux

continus

10.1 Bilan de substance chimique
On considere un fluide homogene et uniforme constitué de différentes substances
chimiques réactives.

1) Déterminer le taux de variation n4 de la densité de substance chimique A.

2) En considérant le régime stationnaire, déterminer la condition imposée sur
les coefficients stoechiométriques v, 4.

Solution

1) Pour un systéme uniforme, les divergences de la vitesse v et de la densité
de courant chimique j 4 sont nulles,

V-v=0 et V-ja=0

Par conséquent, ’équation de continuité (10.26) pour la substance chimique
A se réduit a,

n
na = § Wq Vg A
a=1

2) En régime stationnaire,

ng =0

ce qui implique que les coefficients stoechiométriques satisfont la condition,

n
g Wa Vaa =0
a=1
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10.2 Dérivée temporelle et gradient de pression

1) Déterminer l'expression de la dérivée temporelle de la pression.

2) Déterminer l'expression du gradient de pression.

Solution

1) Compte tenu des expressions (10.86) et (10.71), la densité d’énergie interne
u est donnée par,

u=T8—p+Z HAamA+q@
A=1

La dérivée temporelle de la densité d’énergie interne u s’écrit,

u:sT'+Ts—p+Z (nafra+pana) +eq+qe
A=1

Comme la densité d’énergie interne u (s, {n}, ¢) est une densité de fonction
d’état, sa dérivée temporelle s’écrit,

._@.+r Ou . +@‘
Y= 057 AzlanA""‘ 8qq

Compte tenu des définitions (10.77) des variables intensives température
T, potentiel chimique p4 de la substance A et potentiel électrostatique ¢,

T
u="T5s+ Z Hana+@q
A=1
En identifiant les deux expressions de la dérivée temporelle de la densité

d’énergie interne, on obtient ’expression de la dérivée temporelle de la
pression,

p=sT+> nafiatqé
A=1
2) Le gradient de la densité d’énergie interne u s’écrit,
Vu=sVT+TVs—Vp+ Z (MaAVpa+paVna)+eVag+qVep
A=1
Comme la densité d’énergie interne u (s, {na}, ¢) est une densité de fonction

d’état, le gradient de la densité d’énergie interne s’écrit,

ou ~ Ou ou
Vu=2-Vs+ ) VAt g, Ve
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Compte tenu des définitions (10.77) des variables intensives,

Vu:TVs+Z uaVng+eoVyqg
A=1

En identifiant les deux expressions du gradient de la densité d’énergie in-
terne, on obtient ’expression du gradient de pression,

Vp:sVT—i—Z naVpua+qVo
A=1

10.3 Récipient contenant de I’huile et de I’eau

h huile

h eau @

Fig. 10.1 Un récipient contient des hauteurs égales d’eau et d’huile et ’eau remplit entie-
rement le bec de longueur L.

Un récipient avec un long bec est rempli d’huile et d’eau de sorte que le bec
soit rempli jusqu’a son extrémité (fig. 10.1). L’eau et I’huile sont en contact
avec I'atmosphere. Les hauteurs h de I’eau et de ’huile sont les mémes dans le
récipient. Déterminer I'expression de I’angle d’inclinaison o du bec de longueur
L en termes des densités de masse m. et my de 'eau et de 'huile.

Solution

La pression hydrostatique p au fond du récipient est la somme de la pression
atmosphérique pg, de la pression de T'huile my gh et de la pression de l'eau
me g h,

p=po+mngh+megh

La pression hydrostatique au bas du bec est égale a la pression hydrostatique
au fond du récipient. Elle est la somme de la pression atmosphérique pgy et de
la pression de ’eau m, g L sin a,

p=po+meglL sina
De ces deux équations, on tire ’expression de I'angle d’inclinaison du bec «,

. me +mp h
sinog = —— —
Me L
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10.4 Dynamique d’un systeme homogene et uniforme

Etablir I’expression de la 2° loi de Newton pour un systeme fermé constitué
d’un fluide homogene et uniforme de masse M en mouvement rectiligne.

Solution

1) Pour un systéme uniforme, la divergence du tenseur des contraintes 7 est
nulle,
V.r=0

Par conséquent, la 2¢ loi de Newton (10.35) pour un fluide uniforme en
mouvement rectiligne se réduit a,

fcxt = mo

L’accélération a = v est une grandeur intensive puisqu’elle correspond au
rapport de deux grandeurs extensives. On peut donc intégrer cette équation
par rapport au volume V du systeme,

/Vdeext: (/V de>a

qui prend la forme usuelle,
cht =Ma

N t 7. , . N
ou F'™ est la force extérieure résultante agissant sur le systeme.

10.5 Flotteur sphérique

Fig. 10.2 Un flotteur sphérique est utilisé comme bouchon.

Un bouchon sphérique de rayon R bloque un trou circulaire horizontal situé au
fond d’un récipient rempli de liquide (fig. 10.2). Le niveau du liquide de densité
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de masse m dans le récipient est & une hauteur H au-dessus du trou (H > R/2)
et le point le plus bas de la sphere est & une profondeur h au-dessous du trou
(h < R/2). La pression au-dessus du liquide et en-dessous de la sphere est la
pression atmosphérique pg. Déterminer la force d’Archimede F' 4 exercée par le
liquide sur le bouchon sphérique,

FAz—/pdS
S

Solution

Afin de déterminer la force d’Archimede F 4 exercée par le liquide sur le flot-
teur sphérique, on doit d’abord déterminer la force infinitésimale dF 4 (z) exer-
cée par le liquide sur un anneau sphérique infinitésimal situé a une hauteur
z au-dessus du fond du récipient (fig. 10.3). D’apres la définition de la force

Fig. 10.3 Un anneau sphérique infinitésimal sur la surface du flotteur.

d’Archimede, on a,
dF 4 (z) = —p(z) dS (z)

La pression p (z) exercée par le liquide a la hauteur z est donnée par,
p(z)=mg(H - 2)

Par symétrie, le vecteur dS (z) est orienté verticalement vers le haut car il pointe
hors du liquide. Ainsi, la surface dS (z) de 'anneau sphérique infinitésimal est,

27
dS (z) = R? sinf () cosf () db (2) do 2
0

=27 R? sinf () d (sinH (z)) z

ou £ est le vecteur unité le long de 'axe z orienté vers le haut et le facteur
sin @ (z) rend compte de la projection de la surface infinitésimale d.S (2) le long
de 'axe z. Par inspection graphique, on déduit que,

R—h—z

sinf (z) = — R et ainsi d (sin@ (z)) =— % dz
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Ainsi, I’élément de surface infinitésimale devient,
dS(z)=—-2n(R— h— 2)dz2
et la force infinitésimale est écrite en termes de la coordonnée verticale z comme,
dF 4 (z)=2nmg(H — z)(R— h— z2)dz2

L’intégrale sur la coordonnée verticale z s’écrit,

H

Fu :27ng/ (H-—2)(R—h—2)dz2
0
ou de maniere équivalente comme,
H
FA:Qng/$(H(R—h)sz—ﬁNR—h)+f)M2
0

Ainsi, la force d’Archimede est donnée par,

H
FAzwmgH2O$—h—3)2

10.6 Profil de température de I’atmosphere terrestre

Modéliser le profile de température T'(z) de Patmospheére terrestre comme fonc-
tion de la hauteur z. Ignorer les vents, les nuages et de nombreux effets dus a
la présence d’humidité et traiter 'air comme un gaz parfait. Supposer que ’at-
mosphere terrestre atteint un état d’équilibre principalement du au transfert
de matiere. Supposer que le déplacement d’une masse d’air vers le haut ou vers
le bas est un processus adiabatique parce que la conductivité de ’air est faible.

1) Montrer que,
T() =Ty L2
C*
i3
olt ¢y, est la chaleur spécifique par unité de masse a pression constante.

2) Déduire du profile de température T (z), le profil de pression p(z) et le
profil de densité de masse m (z) de 'atmospheére terrestre,

S ]

ou ¢ est défini en (5.60).
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Solution

1) Pour un processus adiabatique, la différentielle de I’énergie interne dU est
due seulement au travail infinitésimal 6W = — pdV effectué sur l'air,

dU =cNRdT = —pdV
Vu que 'air peut étre traitée comme un gaz parfait,
U=cNRT =cpV
ou la pression p est une fonction du volume V. Ainsi,

U dp

av = CaqyV Ter=r
ce qui implique que,
W e dp
V.  c+10p

La différentielle de 1’énergie interne dU devient,

cV

dU =cNRAT =
c+1

dp

La pression hydrostatique p (z) décroit linéairement avec l’altitude,
dp=—mgdz

Ainsi,
dT mgqgV

dz  (¢c+1)NR
A Taide de la définition de la chaleur spécifique a pression constante par
unité de masse,

_ Gy _(c+DNR

PomVo omV
le gradient de température gradient se réduit a,

dT
“__ 9 ainsi ar = - L 4z
dz c o

En intégrant cette relation de la position initiale zy ou la température est
To & la position finale z ol la température est T (z), on obtient,

T@:R—%z
P

2) D’apres la propriété (5.83),

T c+1
= cste
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ou ¢+ 1 = ¢y, on déduit le profil de pression du profil de température,

p(2) =po <TT(OZ)>C+1

Compte tenu de la propriété,
mV = cste
et de I’équation d’état du gaz parfait,

pV . p
— =cNR = cste on obtient —— = cste
T mT

On en déduit la relation suivante,

m(z) _ p(2)To
mo poT (2)

A T’aide du profile de pression en fonction de la température, on obtient le
profil de masse en fonction de la température,

10.7 Ballon stratosphérique

Modéliser ’ascension d’un ballon de masse M, qui s’éleve du sol jusqu’a la stra-
tosphere. " Au niveau du sol, le ballon a un volume V{, qui est plus petit que
le volume V.« qu’il a quand il est entierement gonflé. Toutefois, le volume 1}
est suffisant pour soulever la charge utile. Le ballon est rempli d’hélium, qui est
considéré comme un gaz parfait. Utiliser le principe d’Archimede (sect.10.5.3)
et le modele de 'atmosphere terrestre établi a ’exercice 10.6.

1) Déterminer la hauteur maximale z .5 atteinte par le ballon.

2) Montrer que la force d’Archimede F' 4 exercée sur le ballon est indépendante
de la hauteur du ballon tant qu’il n’est pas entierement gonflé.

Solution
1) Le profil de masse (sect.10.6) s’écrit,

T (Z max) ¢ g ¢
max) = = 1- max
M (Zmax) = Mo ( T ) mo ( o T z

p

W T. Yamagami, Y. Saito, Y. Matsuzuka, M. Namiki, M. Toriumi, R. Yokota, H. Hirosawa,

K. Matsushima, Development of the highest altitude balloon, Advances in Space Research
33 1653-1659 (2004).
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Fig. 10.4 Un ballon stratosphérique juste apres le décollage.

ce qui implique que la hauteur maximale z . est donnée par,
* 1
¢y To (1 B m(zmax)> /e
g mo

A la hauteur maximale 2zmayx, la force d’Archimede (sect. 10.5.3) est égale
et opposée au poids. Ainsi, ces forces ont des normes égales,

Zmax —

m (zmax) Vmaxg = Mg

ce qui implique que,
M

Vmax
Ainsi, la hauteur maximale 2 .« €st mise sous la forme,

C; TO < M >1/C
Zmax = 11— ———
g mo Vmax

Lorsque le ballon monte, i.e. V' < V., la pression a l'intérieur du ballon
est égale a la pression atmosphérique et le ballon est toujours a 1’équilibre
thermique avec 'air atmosphérique car il monte si lentement. A Daltitude
z, la force d’Archimede est donnée par,

Fy(z)=m(2)V(2)g2

Comme la masse d’hélium dans le ballon est constante,

M (2 max) =

mV = cste ainsi m(z)V(z) =moVy
Par conséquent, la force d’Archimeéde est constante,

F,(z) =mgVyg2 = cste
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10.8 Champ de vitesse dans un tube

Un fluide s’écoule dans un tube qui a une forme telle que le champ de vitesse
dépend linéairement de la position z le long du tube (fig. 10.5). A lentrée
(x = 0), la vitesse est vy. A la sortie (z = L), la vitesse est 3vy. Déterminer
Paccélération a (x) d’un petit volume de fluide.

v =3y,

L =30cm

Fig. 10.5 Un tube impose un certain champ de vitesse v (z,t) au fluide to the fluide qui
s’écoule dans le tube.

Application numérique

vo =3 m/s, L =0.3 m.

Solution

Le champ de vitesse v (z,t) est une fonction linéaire de la coordonnée spatiale
z et une fonction du temps ¢. A l'instant initial ¢ = 0, le petit élément de fluide
est a 'entrée. A D'instant final ¢ = ¢, il est a la sortie. Le champ de vitesse
v (x,t) doit satisfaire les conditions initiale et finale,

v(0,0) = v et v(L,ty) =3

Ainsi, le champ de vitesse est donné par,

v (z,t) = o <1+2;)

Le champ d’accélération a (x,t) est obtenu en prenant la dérivée temporelle
dans le référentiel du fluide (10.18) du champ de vitesse,

a(x,t) =0 (x,t) =0 v (x,t) +v(x,t) dpv(x,t)

Le champ de vitesse est un champ stationnaire car il ne dépend pas expli-
citement du temps, i.e. ;v (x,t) = 0. Ainsi, le champ d’accélération a (z,1)

s’écrit,
22\ 2vg 203 2z
H=w 1+ )20 =20 (1422
a(z,?) “°(+L>L r Ut

ce qui implique que,

242 602
a(0,0)z%zGOm/s ot a(L,tf)z%zl&)m/s
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10.9 Divergence d’un champ de vitesse

Etablir I’équation de continuité (10.34) pour la densité de masse en déterminant
la variation de masse a 'intérieur d’une boite cubique infinitésimale située & une
position écrite en coordonnées cartésiennes comme (z, y, z). La boite a des faces
carrées orthogonales aux axes de coordonnées cartésiennes et les dimensions des
arrétes de la boite infinitésimales sont dx, dy et dz. Le champ de vitesse est

v (z,Y,2).

Solution

D’abord, on considere les faces d'une boite cubique qui sont orthogonales a
Paxe x. Le débit de masse & travers la face située en position = — dz/2 est
déterminé par la vitesse v, (v — dxz/2,y,2) et le débit de masse & travers la
face située en position = + dx/2 est déterminé par la vitesse v, (z + dx/2,y, z).
La variation infinitésimale de la masse dM, a l'intérieur de la boite durant un
intervalle de temps infinitésimal dt est due au débit de masse a travers ces deux
faces. Ainsi, la variation infinitésimale de masse s’écrit,

d d
dM,; =m (m— ;,y,z> Vg (x— ;,y,z> dy dz dt

d d
- m <x+ ;,y,z) Vg <x+ ;,y,z> dy dzdt

ou m(x,y, z) est la densité de masse. Les signes dans le membre de droite de
cette équation sont dus au fait que la vitesse v, (x — dx/2,y, z) est positive
pour un débit entrant de masse et la vitesse v, (z + dx/2,y,2) est positive
pour un débit sortant de masse. Les développements limités au premier ordre
des densités de masse m (z + dx/2,y, z) et des vitesses v, (x £+ dx/2,y, z) sont
donnés par,

d 1
m<x:|:2x,y,z) :m(x,y,z):tiamm(x,y,z) dz

d 1
Vg (xi ;y2> =, (fv,y&)ig@xvx (v,y,2) dx

Compte tenu de ce résultat, 1'expression pour la variation infinitésimale de
masse devient,

dM, = (m— ;@Cmdx) (vl.— ;axvlda:> dy dzdt

1 1
- <m+ Q&Cmdx) (% + 581 Vg dm) dy dz dt
et se réduit a,
dM; = — (vp Oxm +m O, v,) dedydzdt

De maniere similaire, la variation infinitésimale de masse dM, a 'intérieur de
la boite durant un intervalle de temps infinitésimal dt, di au débit de masse a
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travers les deux faces orthogonales a 1’axe y, est donnée par,
dMy, = — (v, 0y m +m 0y vy) drdydzdt

et la variation infinitésimale de masse dM, a 'intérieur de la boite durant un
intervalle de temps infinitésimal dt, dii au débit de masse a travers les deux
faces orthogonales a 'axe z, s’écrit,

dM, = — (v, 0, m+md,v,)dxdydzdt

La dérivée partielle de la densité de masse par rapport au temps est définie
comme,

dM, + dM,, + dM,

O =y dzdi

ce qui implique que,
Orm = — (03 0 + vy Oy +v;0.) m — M (0z vy + Oy vy + 0, v,)
A T'aide des relations vectorielles,

v-V =00, +v,0,+7v,0,
V v =0,v; +0yvy + 0,0,

La dérivée partielle de la densité de masse par rapport au temps est mise sous
la forme suivante,
om=—(v-V)m—(V-v)m

A Taide de la définition (10.18) de la dérivée temporelle dans le référentiel du
fluide,
m=0m+ (v-V)m

on obtient I’équation de continuité (10.34) pour la masse,

A+ (V-v)m=0

10.10 Fluide dans un récipient accéléré

Un récipient avec des parois verticales et une base rectangulaire est soumis a
une accélération constante a orientée vers la droite. On suppose que le liquide
de densité de masse m a l'intérieur du récipient est a I’équilibre par rapport au
récipient et que les frottement sont négligeables.

1) Déterminer la pression dans le liquide comme fonction de la coordonnée
horizontale z et de la coordonnée vertical z.

2) Montrer que la surface du liquide est inclinée vers Parriere avec un angle
d’inclinaison constant « (fig. 10.6). Déterminer ’expression pour a.
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0 -

Fig. 10.6 Un récipient rempli de liquide est soumis & une accélération constante. Dans
un état stationnaire, la surface de I’eau est inclinée vers l’arriere avec un angle d’inclinaison
constant a.

10.10) Solution

1) En absence de frottement visqueux, la seule densité de force extérieure
exercée sur un volume infinitésimal de liquide est son poids spécifique,

fext:mg

Etant donné qu’il n’y a pas de cisaillement et de frottement, i.e. 7 = 0,
d’apres I’équation (10.81), la divergence du tenseur des contraintes se réduit
a I'opposé du gradient de pression,

V.-r=-Vp
Ainsi, la 2° loi de Newton (10.35) peut étre mise sous la forme,
Vp=—-ma+mg
Le gradient de pression Vp est exprimé en coordonnées cartésiennes

comme,

sz@i—k@ﬁ

L’accélération a et le champ gravitationnel g s’écrivent,
a=a et g=—g=z

ce qui implique que,

9p _
8z

op _
or

—ma et —mg

La différentielle de la pression peut étre mise sous la forme,

_ P O
dp(z,z) = %dx%—&dz'——madx— mgdz
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La pression p (x, z) est obtenue par intégration sur les coordonnées spatiales
T et z,
p(x,2)=—max— mgz+p(0,0)

ou la constante d’intégration p (0,0) correspond a la pression a lorigine O
du référentiel. La pression p (0, 0) est la somme de la pression atmosphérique
po et de la pression hydrostatique d’une colonne de liquide m g h,

p(0,0) =po+mgh
Alinsi, la pression au point (z, z) & 'intérieur du liquide s’écrit,
p(z,2)=—max— mgz+py+mgh
L’équation précédente peut étre mise sous la forme,

a P— Do
x 2
g mg

A la surface du liquide, la pression est simplement la pression atmosphé-
rique, i.e. p = pg. Ainsi, la relation précédente se réduit &,

r=—2a+h (& la surface)

ce qui correspond a une droite avec une pente négative étant donné que
a, g et h sont des constantes positives. Ainsi, 'angle d’inclinaison « est
déterminé en calculant le rapport des coordonnées,

z a Lo a
tana = — — = — ainsi « = arctan | —
z g g



